Free考研资料
标题:
一个关于周期函数的问题
[打印本页]
作者:
zhouminwhy
时间:
12-7-30 18:24
提示:
作者被禁止或删除 内容自动屏蔽
作者:
396210614
时间:
12-7-30 23:27
本帖最后由 396210614 于 2012-7-30 23:33 编辑
不知道你讨论这题的背景是什么?如果只是在一个计算题中,这个可以直接用吧,显然pi是被积函数的一个周期,周期函数的积分直接是有这个性质的:它的N个周期长度区间上的积分,就等于一个周期上积分的N倍。这个就是根据:在长度等于被积函数一个周期的区间上面,不管起点跟终点是啥,都等于0到T的积分。然后把积分区间划成N个,当然就得到N倍了。这个证明应该在同济的书上好像有一个例题是有的。具体哪里不记得了……反正就是上册定积分那章里面的,肯定是用变限积分证的,所以肯定是在微积分基本公式那一节之后,我用的第6版。我肯定是看到过的。
。呃,没有图片纯文字啊,不知道你能不能明白我的意思……
作者:
zhouminwhy
时间:
12-7-31 09:50
提示:
作者被禁止或删除 内容自动屏蔽
作者:
zhouminwhy
时间:
12-7-31 09:51
提示:
作者被禁止或删除 内容自动屏蔽
作者:
396210614
时间:
12-7-31 12:20
zhouminwhy 发表于 2012-7-31 09:51
你这样讲一下,我懂了,但是同济五版上貌似没有这种题
我刚看了一下,6版确实有,是一个例题。先证了任意一个长度为T的区间上积分等于0到T区间上的积分,然后就证这个N倍,还给了一个实例,那个实例跟你这题一样,你的是减号,书上是加号而已。不过不打紧了,这个证明也比较容易理解。
作者:
绿豆沙磊
时间:
12-8-15 00:01
提示:
作者被禁止或删除 内容自动屏蔽
欢迎光临 Free考研资料 (http://test.freekaoyan.com/)
Powered by Discuz! X3.2