本讲重点介绍主动性肺动脉高压(低氧性肺动脉高压)(另排节段):
1, 低氧性肺动脉高压:
(高氧:hyperxia、常氧:normoxia、低氧: hypoxia、 缺氧或无氧:anoxia。 在一些论文或教科书中将肺的通气或换气障碍所致的肺泡低氧、高原或通气不良矿井时外界空气氧含量下降,或给动物吸入10%O2或5%O2-5%CO2-90%air培养组织细胞等情况均称为“缺氧”,这是不科学的。因各种原因致肺泡低氧进而导致的肺动脉高压,均使用“缺氧性肺动脉高压”这也是不科学的)。
肺泡低氧使该部位肺血管收缩,若低氧的肺泡范围较广,致使发生收缩的肺动脉较多,则可产生肺动脉高压。见于高原低氧、通风不良的矿井、通气障碍(阻塞性、限制性通气障碍)等肺部疾患致肺泡低氧。我国西部地区海拔高于3000米的面积占国土的1/6。高原低氧致肺动脉高压,进而发展成高山病。影响劳动者健康,不利于对西部地区的开发建设。故对其防治研究具有重大意义。
2.低氧性肺血管收缩反应的特征:1904年Plumier首次观察到吸入低氧气体导致肺动脉高压。其后证实这是一普遍的生理现象。其特征是:a) 反应迅速开始及结束;b) 反应强度与低氧程度间不呈线性关系。同样强度的急性低氧,随低氧时间的延长,反应强度略有下降;若低氧程度越强,该现象越明显。 c) 多次反复的短期急性低氧可使原来对低氧反应性低的个体,增强其反应性,并逐步达到一稳定水平,这种现象称为“可训练”;d) 可重复;c) 对低氧的反应性依动物种属不同而略有差异;e) 低氧性肺动脉高压是肺血管对肺泡低氧的主动性收缩反应。若经受长期反复低氧,肺血管构型发生改变时,则形成慢性低氧性肺动脉高压(此时吸入常氧气体,肺动脉压仍然是高的)。f) 短期急性低氧对心输出量及体循环无明显影响。
3.影响低氧性肺血管受缩反应的因素: 肺泡高二氧化碳或酸中毒;肺血管平滑肌的基础张力:药物(代谢抑制剂-增强;环氧酶抑制剂-增强);生理壮态的破坏;肺血内皮细胞受损-增强。
4. 低氧性肺血管收缩的病理生理意义:使通气与血流相匹配,当V/Q=0.8,这时血液氧合最佳(存在肺内分流和死腔样通气两种V/Q不相配合的病理情况)。 有两种调节方式使V/Q之比尽可能地维持在0.8。
1). 局部性肺泡低氧时。该部位血管收缩分流血液到通气较好的部位,在一定范围内调节V/Q之比是有效的。随着肺泡低氧范围增大调节效率下降。肺动脉压有否升高依肺泡低氧范围大小。
2). 全肺性肺泡低氧时:此时全肺血管均收缩,升高肺动脉压。肺动脉压升高后,一方面从肺底部分流血液到肺顶部,使肺顶部原来闭锁的血管开放,扩大气体交换面积;另一方面,全肺泡低氧时,可导致PaO2 下降。PaO2下降, 通过反射作用增强通气,增加肺泡通气量,使肺顶部的肺泡有通气、换气。上述二者相配合,增加气体交换面积,以达到改善血液氧合。但在外界空气为低氧环境下,因吸入的是低氧气体,该代偿无效。
反射途径为PAO2↓---PaO2---CB ---CNS---VL↑----PAO2↑----PaO2↑
该代偿反应在阻塞性通气障碍较限制性通气障碍时更有效。
5. 肺血管对肺泡低氧的感受部位:肺循环动脉端血管内流动的是静脉血,PaO2为40 mmHg,肺动脉血管内皮细胞对此低氧不感受;而正常时 PAO2 >100 mmHg; 当 PAO2 下降至 70~60 mmHg 时,肺动脉压开始升高。此时的PAO2较PaO2要高的多。提示,肺血管的收缩反应仅感受肺泡低氧。肺泡低氧的信号经气道(如呼吸细支气管、 肺泡导管)的上皮到达血管的平滑肌。而血管内皮细胞有屏障作用。
6 . 肺血管收缩反应部位:肌型及部分肌型动脉
7. 低氧致肺血管收缩的作用机理:
1).低氧直接作用:对低氧的感受部位与肺血管收缩部位为一体;而且反应迅速开始与结束。故推测通过释放活性物质来介导的可能性极小。至今也尚未找到一个理想的参与调控的活性物质。目前多认为是低氧直接作用于肺小动脉平滑肌细胞,使其细胞膜去极化,降低跨膜电位,使其接近兴奋阈值。支持这一观点的实验依据是: a),在离体肺动脉条(脱离神经支配),低氧时该动脉条收缩,并记录到细胞内静息膜电位降低,与激活阈电位接近;同时细胞膜内外离子分布有改变,Ca++流入膜内,K+流出膜外,平滑肌收缩与胞内Ca++增多有关。b), 动物实验表明:钙通道阻断剂,如异搏定,硝苯吡啶与尼群地平等可显著抑制低氧所致的肺动脉高压及右心肥大。间接证明低氧性肺血管收缩与细胞的钙内流有关。c), 低氧致体外培养的肺动脉平滑肌细胞发生收缩时,也记录到胞内钙含量增多。持续较久的低氧细胞表面起皱纹。提示低氧直接作用于肺血管平滑肌使其收缩。
作用机理可能是:低氧使肺血管平滑肌细胞膜上的一些氧化酶,如细胞色素氧化酶,细胞色素P450等分子构型发生改变,致使细胞膜的某些离子通道开放,使细胞丢失K+,而摄取Na+ 致细胞膜电位降低,呈部分去极化状态,进而致电压依赖性钙通道开放。胞外钙内流、胞内储存钙释放。促使胞内游离钙含量增多。增多的胞内游离钙含量与钙调素( calmodulin)结合,使钙调素活化,进而激活肌凝蛋白轻链激酶(MLCK),使其磷酸化。磷酸化的MLCK作用于肌动蛋白,而发生收缩反应。
2). 血管活性物质参与调制(modulation):在肺泡低氧过程中,也发现有一些血管活性物质的量在肺组织及肺静脉血中有变化。由于肺血管壁细胞(主要是血管内皮细胞),肺小动脉周围的肺组织,以及血细胞可合成分泌一些活性物质,参与调控肺血管收缩反应的强度,使反应强度既有代偿作用,又不致于使肺动脉压升高过度,加重右心负荷。虽然体液因子在低氧所致的快速肺血管收缩反应中不起重要作用,但在较持久的肺泡低氧过程中,体液因子起着调控作用。使反应保持在对机体最有利的适当范围。参与调节的主要体液因子有:
a, 花生四烯酸代谢产物: 环氧
化酶途径PGI2、 TXA2 : 脂氧化酶途径: 白三烯(LTs:LTC4 > LTD4 > LTE4)
b, 组胺:肥大细胞合成分泌,
受体有H1、H2、H3三种
c, 儿茶酚胺:去甲肾上腺素、肾上腺素
d,血管紧张素11 (AngII),血管紧张素转换酶(ACE),
e, 内皮源性舒张因子( EDRF NO)
f, 内皮源性收缩因子( EDCF ET-1 )
g, CO 、H2S 主要由平滑肌细胞合成分泌
h, 血小板激活因子 ( PAF )
i, 活性氧 肺内有产生活性氧的
体系:黄嘌呤氧化酶(XO), 黄嘌呤脱氢酶(XD),
6. 肺血管收缩与肺血管构形重
建: 反复地慢性低氧(高原低氧、慢性阻塞性肺疾患( COPD) 可导致慢性肺动脉高压。此时,去除肺泡低氧后,肺动脉压仍然是高的,这是由于肺血管构型重建:肺血管壁中平滑肌细胞等细胞增生、肥大,细胞数量增多、细胞外间质堆积,致管壁增厚、管腔狭窄、管壁弹性下降,增加对血流的阻力。此时肺血管对低氧的反应性略有增强;但另一方面又产生对低氧的适应,使反应性下降。故最终的反应取决于上述两因素的共同作用的净结果;
致肺血管构型重建的机理:低氧可直接促进肺血管平滑肌细胞表型转变,使其增殖和分泌;压力的变化等,也致肺血管平滑肌细胞和内皮细胞自分泌与旁分泌促增殖的细胞因子、生长因子等促使血管壁细胞增殖。
六, 损伤性肺血管收缩反应。
系主动性肺动脉高压的一种。是由于吸入大气中来的或血液循环至肺的有害因子,它们可直接或通过激活补体,吸引中性粒细胞的趋化物质等,活化的中性粒细胞和肺泡巨嗜细胞等,释放氧自由基及蛋白酶类。除损伤肺血管外,又可导致肺血管收缩。
七, 动脉高压的防治。
1. 被动性肺动脉高压,应及时治疗原发病变。
2. 主动性肺动脉高压,以预防为
主:低氧习复,提高对低氧的耐受性。
治疗:明确诊断,有无肺动脉高压,用右心导管法;无创性检查方法多,但准确性差。判断有无可逆性:吸氧;血管扩张药,服药24小时内肺动脉压降5 mmHg以上为可逆性肺动脉高压。其治疗效果较好。
消出病因(肺泡低氧)。 对COPD病人最好是吸入28%氧。
药物降压: 血管扩张药,钙通道阻断剂,等 |