The The Elements of Statistical Learning 统计学习基础 中英文完整版 |
[attach]324357[/attach]
内容简介 · · · · · · 《统计学习基础:数据挖掘、推理与预测》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《统计学习基础:数据挖掘、推理与预测》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。 作者简介 · · · · · · Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting. 链接:https://pan.baidu.com/s/1gRZq0EJC39-kyak715ZTag
购买主题
本主题需向作者支付 50 个金币 才能浏览
|
联系我们|Free考研资料 ( 苏ICP备05011575号 )
GMT+8, 25-1-8 16:02 , Processed in 0.089888 second(s), 12 queries , Gzip On, Xcache On.
Powered by Discuz! X3.2
© 2001-2013 Comsenz Inc.