2011年心理学考研统计心理学简答专项强化习题及答案
简答题 1.简述条图、直方图、圆形图(饼图)、线图以及散点图的用途 答:这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。 2.简述正态分布的主要应用 答:正态分布的应用主要牵涉到通过查标准正态分布表进行Z分数和概率之间的转换。其主要应用可以分为已知录取率求解分数线问题及其反问题,即已知原始分数或根据特定界限求解录取率或考生人数。分数线问题主要是根据录取率确定合适的查表概率(中央概率),查得Z分数并转换为原始分数;后者则主要是通过将原始分数或界限标准化,查表得到概率然后求解录取率或考生人数。此外,这种关系在测量中等级分数或难度的等距化、测验分数的标准化等程序中也有应用。 3.简述T检验和方差分析法在进行组间比较上的区别和联系 答:T检验和方差分析法的共同点是:它们都是推断统计的主要方法,都可以用于检验组间差异,即通过比较自变量(性质变量)的各水平在因变量上的差异对自变量的效应进行判断。它们的区别是:T检验主要是基于T分布理论,只能用于检验两组之间的差异,即其分析的自变量只能有两个水平;而方差分析则主要用于多组比较。另一方面,T检验还可以对单个总体参数的显著性进行检验,而方差分析法作为一般线性模型,可以同时处理多个自变量在多个因变量上的效应检验问题。 4.简述Z分数的应用 答:Z分数的应用主要有:①表示各原始数据在数据组中的相对位置;②对于正态数据,可表示该数据以下或以上数据的比例,具体说可以求解诸如分数线问题或人数比例问题;③表示标准化测验的分数;④用于异常值的取舍。 5.简述卡方配合度检验和卡方独立性检验的区别 答:卡方配合度检验主要用于检验单个名义型变量多个分类上的实计数和某个理论次数分布(如均匀分布)之间的差异显著性,因此可以将之理解成多组之间次数比较的方法;卡方独立性检验主要用于检验两个名义型变量各项分类上的次数之间是否存在显著关联,是考察名义型变量间相关性的方法。 6.简述方差分析法的步骤 答:方差分析法的步骤是:①和一般的假设检验一样设立零假设和研究假设;②根据实验设计的类型确定各变异源,进行相应的平方和分解,即有几个变异源就从总平方和中分解出几个平方和;③根据平方和分解得到各变异源对应的自由度,即进行总自由度的分解;④根据研究的目的和实验设计考虑要检验什么效应,从而将其对应的平方和比上相应的自由度得到该效应的均方,其中误差均方必须计算;⑤将各待检验效应的均方比上误差的均方,构造各F统计量;⑥将计算来的各F统计量值和F检验的临界值进行比较得出统计结论,其中临界值的分子自由度和分母自由度分别是待检验效应的自由度和误差自由度;⑦(可不答)如果效应检验结果显著,可以进入事后检验,即对多水平的自变量进行多重比较考察各水平间的具体差异,如果是多因素方差分析,交互作用效应检验显著,也可以进入简单效应检验具体考察交互作用的情况。 7.简述方差和差异系数在反映数据离散程度上的区别和联系 答:方差反映了数据的变异或离散程度,即数据偏离平均数的程度,方差越大表示数据离散程度越大;而差异系数则反映了该组数据以平均数为单位的离散程度。它们的区别主要是方差一般不能直接用于两组数据间相对离散程度的比较,尤其是当两组数据的水平差异较大时。但特殊情况下如果数据的水平相当,且是同质数据,则可以直接由方差看出两组数据相对离散程度,这时它和差异系数的功用相同。 8.简述回归分析法最小二乘法的思路 答:回归分析法的目的是建立因变量的期望值和自变量之间的函数关系式,称为回归模型,最小二乘法认为,这样的回归模型应当使模型中的期望值和实际观测数据之间的误差达到最小,最小二乘就是指所有的误差项平方和达到最小。然后再通过求解达到该最小值时的未知参数得到函数关系式。这就是最小二乘法的基本原理。 9.简述完全随机化设计和随机区组设计进行方差分析的区别 答:两种设计方差分析的区别主要在于总平方和分解不同,不同的设计实际上对应了研究者对实验中可能对因变量产生效应的各变量的不同考虑,因此方差分析时的变异源也当然不同,所以总平方和分析出来不一样,如随机化设计只分解出组间和组内两部分,把组内当成误差,而区组设计则还要在组内部分中分解出区组变异和残差变异。平方和分解变了,当然后面对应的自由度分解,均方的计算和F统计量的构造数量都有所不同。 10.简述假设检验中两类错误的区别和联系 答:假设检验中的两类错误指α型错误和β型错误,前者又称为弃真错误,指当零假设为真时错误地拒绝了它,因此其大小等于事先设置的显著型水平,即0.05或0.01;后者又称为取伪错误,指当零假设为假时错误地接受了它。二者性质不同,前提条件不同,这是它们的区别。两类错误的联系是:它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在总体间真实差异不变情况下,它们之间是一种此消彼长的关系,因此,不可能同时减小两种错误的发生可能,常用的办法是固定α的情况下尽可能减小β,比如通过增大样本容量来实现。 11.简述多重比较和简单效应检验的区别 答:多重比较又称事后检验,是紧接着方差分析后的分析步骤,当方差分析结果显示某变量主效应显著时,用多重比较进一步分析差异具体在该变量的什么水平上。简单效应检验针对的是两个变量或多个变量间的交互作用,也是方差分析后的步骤,当交互作用显著时,用简单效应检验考察某变量的效应在另一个变量的不同水平上的差异情况。 12.简述卡方检验的主要用途 答:卡方检验主要可以用于处理计数数据的拟合问题。具体说,它可以检验单变量多项分类上的实计数和理论次数分布之间的差异显著性,称为配合度检验;也可以检验两个变量各项分类上的次数之间是否存在显著关联,称为独立性检验。卡方检验主要是处理计数数据的统计方法,由于其对数据的分布不像参数检验那样通常要求正态,因此也被认为属于非参数检验法。 13.简述平均数显著性检验和平均数差异显著性检验的区别和联系 答:两种检验都是基本的假设检验问题,都是基于同样的抽样分布(正态分布或T分布)进行的推断统计,而且差异显著性问题的解决是通过将问题转换为显著性检验问题。这是二者的联系,区别是显著性检验用于解决单个未知平均数和一个已知总体均值之间的差异显著性,而差异显著性检验则是检验两个未知总体平均数是否存在显著差异,所以也可以将前者理解为单参数问题,而将后者理解为双参数问题。此外,由于双参数问题更为复杂,其公式和不同的条件也较多,除了和单参数问题一样要考虑数据总体的分布、母总体参数是否已知之外,还要考虑两样本是否独立,两总体的方差是否相等等。 14.简述假设检验中零假设和研究假设的作用 答:假设检验使用的是一种反证法的思想,研究者关心的本来是研究假设,即存在差异,但直接进行推断往往行不通,所以借用反证法思想,通过检验研究假设的对立面--零假设来创造推理的条件简介对研究假设进行推断。零假设往往是推理的基础,通过推理拒绝或接受零假设,就可以接受或拒绝研究假设。 15.简述条图、饼图和直方图用法的区别和联系 答:统计图形常可用来帮助直观地了解数据中的信息,正确使用统计图形的关键是要区分各种图形的用途。同样是表达数据的次数分布,条图、饼图和直方图各有特点,用途也有差别:条图用于离散或分类变量各取值结果的次数或相对次数分布,直方图用于连续变量(分组后)在各分段上的次数或相对次数分布;它们都是用直条高度表示次数,但条图的横坐标没有单位,而直方图的横坐标有意义,其直条连在一起。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率,因此其包含的信息比一般的条图要丰富一些。 16.简述什么是抽样分布 答:抽样分布又称为基本随机变量函数的分布,即样本统计量的理论分布;是利用各种样本统计量对总体参数进行推断的基础。常见的抽样分布如正态分布、T分布、卡方分布、F分布等。 17.简述统计量和参数的区别和联系 答:统计量和参数都是反应数据特征的数量,但它们分别是相对于样本和总体而言,统计量是反映样本特点的数字特征,而参数时反应总体特点的数字特征。它们经常联系在一起,实际上推断统计就是利用样本统计量来对总体参数进行估计或者假设检验。 18.简述相关分析和回归分析的区别和联系 答:相关分析和回归分析的联系是:它们通常都是基于两正态连续变量的假设,都是处理两变量间相互关系的统计方法,通常两种方法不同时出现在文章中;二者的区别是作为相互关系分析的方法,相关分析是通过提供一个相关系数来考察两变量间的联系程度,而回归分析则是重在建立两变量间的函数关系式,因此通常可以先考察相关系数的显著型,如果显著则可以进一步考虑建立变量间的回归方程。此外,相关分析和回归分析又各有一些具体方法用于处理不同的情况,如相关分析还包括等级相关、质量相关和品质相关,回归分析还包括非线性回归等。 19.简述积差相关系数和等级相关系数间的区别 答:两种相关分析法都是常用的相关系数计算公式,区别是:积差相关系数用于正态等距或等比数据,其对数据的要求比较高,结果也比较精确;而当无法确定数据是否服从正态,或者数据是等级数据时,使用斯皮尔曼等级相关系数。因此其应用范围较广,但结果精确性相对低一些。此外,等级相关中的肯德尔W系数可用于评定多列数据的相关性。 20.简述非参数检验的主要特点 答:非参数检验相对参数检验不需要严格的前提假设,特别是关于分布正态性假设,所以也称为自由分布检验;特别适用于等级/名义型资料,对这类数据参数方法无法直接检验;特别适用于小样本的探索性/预备研究;其优点是计算简便、直观,易于掌握,检验速度较快;缺点是对资料的信息利用少,方法的效能和完善性都不及参数检验。
|