Free考研资料 - 免费考研论坛

 找回密码
 注册
打印 上一主题 下一主题

中心极限定理中的样本容量n小于30“且”总体非正态时,样本均值的分布是怎样的

[复制链接]
楼主
5jack 发表于 13-11-20 17:43:40 来自手机设备或APP | 显示全部楼层
本帖最后由 5jack 于 2013-11-20 17:54 编辑

根据中心极限定理,n变化,样本均值u与总体分布平均值始终相当。借用数学中的极限思维法,当n=1时,样本均值分布就是总体分布,此时样本均值分布跟总体分布形状一样。当n很大时,定理告诉我们,此时样本均值分布接近正态。假如当n大到跟总体一样的量,那么每次抽取的就是总体了,样本均值分布就是总体平均数的固定数值分布了,其标准差就是0了,它的图形就是一条垂直线了。你可以拿笔把这个过程以图形方式画一下。可以得出结论,当n很小时,比如2.3,原分布什么形态,其样本均值分布就接近那个形态,随着n变化,往原分布均值方向聚拢变窄,也同时逐渐正态,最后变成垂直线。
PS:不会像上面有人说的可以是任何形状。假如原分布为正偏态,而样本均值分布为负偏态,其均值怎么可能等于原分布的均值。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

联系我们|Free考研资料 ( 苏ICP备05011575号 )

GMT+8, 25-6-13 07:44 , Processed in 0.227446 second(s), 10 queries , Gzip On, Xcache On.

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表