Free考研资料

标题: 2010年苏州大学数学科学学院高等代数真题(回忆版) [打印本页]

作者: caixiaolin    时间: 10-1-15 12:50
标题: 2010年苏州大学数学科学学院高等代数真题(回忆版)
2010年苏州大学数学科学学院高等代数真题(回忆版)
1.求x^2-x+1整除x^3*m + x^(3*n+1) + x^(3*k+2)的条件。(也就是m、n、k满足什么条件)
2应该很简单,所以忘了
3已知A,B可逆求分块矩阵  A        A  的逆。
                                                C-B     B
4证明Ax=b,(b不等于0)有解当且仅当若A‘y=0则b’y=0(A‘是A的转置)
5A是V上线性变换g(x)=x^3-2*x,g(A)=0.证明V是kerA^2与ker(A-2)的直和
6已知A、B正定,AB=BA。(1)证明存在正交P使A、B都为对角阵(2)证明AB也正定
7 证明X=XJ+JX只有零解。X、J都是n*n 矩阵。J所有元素全为1 ww w. i ky .  c n
作者: 静止的风    时间: 10-5-9 11:30
提示: 作者被禁止或删除 内容自动屏蔽
作者: 1396767086    时间: 10-7-4 11:51
提示: 作者被禁止或删除 内容自动屏蔽
作者: 1396767086    时间: 10-7-4 11:52
提示: 作者被禁止或删除 内容自动屏蔽




欢迎光临 Free考研资料 (http://test.freekaoyan.com/) Powered by Discuz! X3.2